123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317
/** Arbitrary precision arithmetic ('bignum') for processors with no asm support
 *
 * All functions operate on arrays of uints, stored LSB first.
 * If there is a destination array, it will be the first parameter.
 * Currently, all of these functions are subject to change, and are
 * intended for internal use only.
 * This module is intended only to assist development of high-speed routines
 * on currently unsupported processors.
 * The X86 asm version is about 30 times faster than the D version(DMD).
 *
 * Copyright: Copyright (C) 2008 Don Clugston.  All rights reserved.
 * License:   BSD style: $(LICENSE)
 * Authors:   Don Clugston
 */

module tango.math.internal.BignumNoAsm;

public:
alias uint BigDigit; // A Bignum is an array of BigDigits. 
    
    // Limits for when to switch between multiplication algorithms.
enum : int { KARATSUBALIMIT = 10 }; // Minimum value for which Karatsuba is worthwhile.
enum : int { KARATSUBASQUARELIMIT=12 }; // Minimum value for which square Karatsuba is worthwhile


/** Multi-byte addition or subtraction
 *    dest[] = src1[] + src2[] + carry (0 or 1).
 * or dest[] = src1[] - src2[] - carry (0 or 1).
 * Returns carry or borrow (0 or 1).
 * Set op == '+' for addition, '-' for subtraction.
 */
uint multibyteAddSub(char op)(uint[] dest, uint [] src1, uint [] src2, uint carry)
{
    ulong c = carry;
    for (uint i = 0; i < src2.length; ++i) {
        static if (op=='+') c = c  + src1[i] + src2[i];
             else           c = cast(ulong)src1[i] - src2[i] - c;
        dest[i] = cast(uint)c;
        c = (c>0xFFFF_FFFF);
    }
    return cast(uint)c;
}

unittest
{
    uint [] a = new uint[40];
    uint [] b = new uint[40];
    uint [] c = new uint[40];
    for (int i=0; i<a.length; ++i)
    {
        if (i&1) a[i]=0x8000_0000 + i;
        else a[i]=i;
        b[i]= 0x8000_0003;
    }
    c[19]=0x3333_3333;
    uint carry = multibyteAddSub!('+')(c[0..18], b[0..18], a[0..18], 0);
    assert(c[0]==0x8000_0003);
    assert(c[1]==4);
    assert(c[19]==0x3333_3333); // check for overrun
    assert(carry==1);
    for (int i=0; i<a.length; ++i)
    {
        a[i]=b[i]=c[i]=0;
    }
    a[8]=0x048D159E;
    b[8]=0x048D159E;
    a[10]=0x1D950C84;
    b[10]=0x1D950C84;
    a[5] =0x44444444;
    carry = multibyteAddSub!('-')(a[0..12], a[0..12], b[0..12], 0);
    assert(a[11]==0);
    for (int i=0; i<10; ++i) if (i!=5) assert(a[i]==0); 
    
    for (int q=3; q<36;++q) {
        for (int i=0; i<a.length; ++i)
        {
            a[i]=b[i]=c[i]=0;
        }    
        a[q-2]=0x040000;
        b[q-2]=0x040000;
       carry = multibyteAddSub!('-')(a[0..q], a[0..q], b[0..q], 0);
       assert(a[q-2]==0);
    }
}



/** dest[] += carry, or dest[] -= carry.
 *  op must be '+' or '-'
 *  Returns final carry or borrow (0 or 1)
 */
uint multibyteIncrementAssign(char op)(uint[] dest, uint carry)
{
    static if (op=='+') {
        ulong c = carry;
        c += dest[0];
        dest[0] = cast(uint)c;
        if (c<=0xFFFF_FFFF) return 0; 
        
        for (uint i = 1; i < dest.length; ++i) {
            ++dest[i];
            if (dest[i]!=0) return 0;
        }
        return 1;
   } else {
       ulong c = carry;
       c = dest[0] - c;
       dest[0] = cast(uint)c;
       if (c<=0xFFFF_FFFF) return 0;
        for (uint i = 1; i < dest.length; ++i) {
            --dest[i];
            if (dest[i]!=0xFFFF_FFFF) return 0;
        }
        return 1;
    }
}

/** dest[] = src[] << numbits
 *  numbits must be in the range 1..31
 */
uint multibyteShl(uint [] dest, uint [] src, uint numbits)
{
    ulong c = 0;
    for(int i=0; i<dest.length; ++i){
        c += (cast(ulong)(src[i]) << numbits);
        dest[i] = cast(uint)c;
        c >>>= 32;
   }
   return cast(uint)c;
}


/** dest[] = src[] >> numbits
 *  numbits must be in the range 1..31
 */
void multibyteShr(uint [] dest, uint [] src, uint numbits)
{
    ulong c = 0;
    for(int i=dest.length-1; i>=0; --i){
        c += (src[i] >>numbits) + (cast(ulong)(src[i]) << (64 - numbits));
        dest[i]= cast(uint)c;
        c >>>= 32;
   }
}

unittest
{
    
    uint [] aa = [0x1222_2223, 0x4555_5556, 0x8999_999A, 0xBCCC_CCCD, 0xEEEE_EEEE];
    multibyteShr(aa[0..$-2], aa, 4);
	assert(aa[0]==0x6122_2222 && aa[1]==0xA455_5555 && aa[2]==0x0899_9999);
	assert(aa[3]==0xBCCC_CCCD);

    aa = [0x1222_2223, 0x4555_5556, 0x8999_999A, 0xBCCC_CCCD, 0xEEEE_EEEE];
    multibyteShr(aa[0..$-1], aa, 4);
	assert(aa[0] == 0x6122_2222 && aa[1]==0xA455_5555 
	    && aa[2]==0xD899_9999 && aa[3]==0x0BCC_CCCC);

    aa = [0xF0FF_FFFF, 0x1222_2223, 0x4555_5556, 0x8999_999A, 0xBCCC_CCCD, 0xEEEE_EEEE];
    multibyteShl(aa[1..4], aa[1..$], 4);
	assert(aa[0] == 0xF0FF_FFFF && aa[1] == 0x2222_2230 
	    && aa[2]==0x5555_5561 && aa[3]==0x9999_99A4 && aa[4]==0x0BCCC_CCCD);
}

/** dest[] = src[] * multiplier + carry.
 * Returns carry.
 */
uint multibyteMul(uint[] dest, uint[] src, uint multiplier, uint carry)
{
    assert(dest.length==src.length);
    ulong c = carry;
    for(int i=0; i<src.length; ++i){
        c += cast(ulong)(src[i]) * multiplier;
        dest[i] = cast(uint)c;
        c>>=32;
    }
    return cast(uint)c;
}

unittest
{
    uint [] aa = [0xF0FF_FFFF, 0x1222_2223, 0x4555_5556, 0x8999_999A, 0xBCCC_CCCD, 0xEEEE_EEEE];
    multibyteMul(aa[1..4], aa[1..4], 16, 0);
	assert(aa[0] == 0xF0FF_FFFF && aa[1] == 0x2222_2230 && aa[2]==0x5555_5561 && aa[3]==0x9999_99A4 && aa[4]==0x0BCCC_CCCD);
}

/**
 * dest[] += src[] * multiplier + carry(0..FFFF_FFFF).
 * Returns carry out of MSB (0..FFFF_FFFF).
 */
uint multibyteMulAdd(char op)(uint [] dest, uint[] src, uint multiplier, uint carry)
{
    assert(dest.length == src.length);
    ulong c = carry;
    for(int i = 0; i < src.length; ++i){
        static if(op=='+') {
            c += cast(ulong)(multiplier) * src[i]  + dest[i];
            dest[i] = cast(uint)c;
            c >>= 32;
        } else {
            c += cast(ulong)multiplier * src[i];
            ulong t = cast(ulong)dest[i] - cast(uint)c;
            dest[i] = cast(uint)t;
            c = cast(uint)((c>>32) - (t>>32));                
        }
    }
    return cast(uint)c;    
}

unittest {
    
    uint [] aa = [0xF0FF_FFFF, 0x1222_2223, 0x4555_5556, 0x8999_999A, 0xBCCC_CCCD, 0xEEEE_EEEE];
    uint [] bb = [0x1234_1234, 0xF0F0_F0F0, 0x00C0_C0C0, 0xF0F0_F0F0, 0xC0C0_C0C0];
    multibyteMulAdd!('+')(bb[1..$-1], aa[1..$-2], 16, 5);
	assert(bb[0] == 0x1234_1234 && bb[4] == 0xC0C0_C0C0);
    assert(bb[1] == 0x2222_2230 + 0xF0F0_F0F0+5 && bb[2] == 0x5555_5561+0x00C0_C0C0+1
	    && bb[3] == 0x9999_99A4+0xF0F0_F0F0 );
}


/** 
   Sets result = result[0..left.length] + left * right
   
   It is defined in this way to allow cache-efficient multiplication.
   This function is equivalent to:
    ----
    for (int i = 0; i< right.length; ++i) {
        dest[left.length + i] = multibyteMulAdd(dest[i..left.length+i],
                left, right[i], 0);
    }
    ----
 */
void multibyteMultiplyAccumulate(uint [] dest, uint[] left, uint [] right)
{
    for (int i = 0; i< right.length; ++i) {
        dest[left.length + i] = multibyteMulAdd!('+')(dest[i..left.length+i],
                left, right[i], 0);
    }
}

/**  dest[] /= divisor.
 * overflow is the initial remainder, and must be in the range 0..divisor-1.
 */
uint multibyteDivAssign(uint [] dest, uint divisor, uint overflow)
{
    ulong c = cast(ulong)overflow;
    for(int i = dest.length-1; i>=0; --i){
        c = (c<<32) + cast(ulong)(dest[i]);
        uint q = cast(uint)(c/divisor);
        c -= divisor * q;
        dest[i] = q;
    }
    return cast(uint)c;
}

unittest {
    uint [] aa = new uint[101];
    for (int i=0; i<aa.length; ++i) aa[i] = 0x8765_4321 * (i+3);
    uint overflow = multibyteMul(aa, aa, 0x8EFD_FCFB, 0x33FF_7461);
    uint r = multibyteDivAssign(aa, 0x8EFD_FCFB, overflow);
    for (int i=aa.length-1; i>=0; --i) { assert(aa[i] == 0x8765_4321 * (i+3)); }
    assert(r==0x33FF_7461);

}
// Set dest[2*i..2*i+1]+=src[i]*src[i]
void multibyteAddDiagonalSquares(uint[] dest, uint[] src)
{
    ulong c = 0;
    for(int i = 0; i < src.length; ++i){
		 // At this point, c is 0 or 1, since FFFF*FFFF+FFFF_FFFF = 1_0000_0000.
         c += cast(ulong)(src[i]) * src[i] + dest[2*i];
         dest[2*i] = cast(uint)c;
         c = (c>>=32) + dest[2*i+1];
         dest[2*i+1] = cast(uint)c;
         c >>= 32;
    }
}

// Does half a square multiply. (square = diagonal + 2*triangle)
void multibyteTriangleAccumulate(uint[] dest, uint[] x)
{
    // x[0]*x[1...$] + x[1]*x[2..$] + ... + x[$-2]x[$-1..$]
    dest[x.length] = multibyteMul(dest[1 .. x.length], x[1..$], x[0], 0);
	if (x.length <4) {
	    if (x.length ==3) {
            ulong c = cast(ulong)(x[$-1]) * x[$-2]  + dest[2*x.length-3];
	        dest[2*x.length-3] = cast(uint)c;
	        c >>= 32;
	        dest[2*x.length-2] = cast(uint)c;
        }
	    return;
	}
    for (int i = 2; i < x.length-2; ++i) {
        dest[i-1+ x.length] = multibyteMulAdd!('+')(
             dest[i+i-1 .. i+x.length-1], x[i..$], x[i-1], 0);
    }
	// Unroll the last two entries, to reduce loop overhead:
    ulong  c = cast(ulong)(x[$-3]) * x[$-2] + dest[2*x.length-5];
    dest[2*x.length-5] = cast(uint)c;
    c >>= 32;
    c += cast(ulong)(x[$-3]) * x[$-1] + dest[2*x.length-4];
    dest[2*x.length-4] = cast(uint)c;
    c >>= 32;
    c += cast(ulong)(x[$-1]) * x[$-2];
	dest[2*x.length-3] = cast(uint)c;
	c >>= 32;
	dest[2*x.length-2] = cast(uint)c;
}

void multibyteSquare(BigDigit[] result, BigDigit [] x)
{
    multibyteTriangleAccumulate(result, x);
    result[$-1] = multibyteShl(result[1..$-1], result[1..$-1], 1); // mul by 2
    result[0] = 0;
    multibyteAddDiagonalSquares(result, x);
}