123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414 |
|
/*
* This module holds declarations to LLVM intrinsics.
*
* See the LLVM language reference for more information:
*
* - http://llvm.org/docs/LangRef.html#intrinsics
*
*/
module ldc.intrinsics;
// Check for the right compiler
version(LDC)
{
// OK
}
else
{
static assert(false, "This module is only valid for LDC");
}
//
// CODE GENERATOR INTRINSICS
//
// The 'llvm.returnaddress' intrinsic attempts to compute a target-specific
// value indicating the return address of the current function or one of its
// callers.
pragma(intrinsic, "llvm.returnaddress")
void* llvm_returnaddress(uint level);
// The 'llvm.frameaddress' intrinsic attempts to return the target-specific
// frame pointer value for the specified stack frame.
pragma(intrinsic, "llvm.frameaddress")
void* llvm_frameaddress(uint level);
// The 'llvm.stacksave' intrinsic is used to remember the current state of the
// function stack, for use with llvm.stackrestore. This is useful for
// implementing language features like scoped automatic variable sized arrays
// in C99.
pragma(intrinsic, "llvm.stacksave")
void* llvm_stacksave();
// The 'llvm.stackrestore' intrinsic is used to restore the state of the
// function stack to the state it was in when the corresponding llvm.stacksave
// intrinsic executed. This is useful for implementing language features like
// scoped automatic variable sized arrays in C99.
pragma(intrinsic, "llvm.stackrestore")
void llvm_stackrestore(void* ptr);
// The 'llvm.prefetch' intrinsic is a hint to the code generator to insert a
// prefetch instruction if supported; otherwise, it is a noop. Prefetches have
// no effect on the behavior of the program but can change its performance
// characteristics.
pragma(intrinsic, "llvm.prefetch")
void llvm_prefetch(void* ptr, uint rw, uint locality);
// The 'llvm.pcmarker' intrinsic is a method to export a Program Counter (PC)
// in a region of code to simulators and other tools. The method is target
// specific, but it is expected that the marker will use exported symbols to
// transmit the PC of the marker. The marker makes no guarantees that it will
// remain with any specific instruction after optimizations. It is possible
// that the presence of a marker will inhibit optimizations. The intended use
// is to be inserted after optimizations to allow correlations of simulation
// runs.
pragma(intrinsic, "llvm.pcmarker")
void llvm_pcmarker(uint id);
// The 'llvm.readcyclecounter' intrinsic provides access to the cycle counter
// register (or similar low latency, high accuracy clocks) on those targets that
// support it. On X86, it should map to RDTSC. On Alpha, it should map to RPCC.
// As the backing counters overflow quickly (on the order of 9 seconds on
// alpha), this should only be used for small timings.
pragma(intrinsic, "llvm.readcyclecounter")
ulong readcyclecounter();
//
// STANDARD C LIBRARY INTRINSICS
//
// The 'llvm.memcpy.*' intrinsics copy a block of memory from the source
// location to the destination location.
// Note that, unlike the standard libc function, the llvm.memcpy.* intrinsics do
// not return a value, and takes an extra alignment argument.
pragma(intrinsic, "llvm.memcpy.i#")
void llvm_memcpy(T)(void* dst, void* src, T len, uint alignment);
deprecated {
alias llvm_memcpy!(uint) llvm_memcpy_i32;
alias llvm_memcpy!(ulong) llvm_memcpy_i64;
}
// The 'llvm.memmove.*' intrinsics move a block of memory from the source
// location to the destination location. It is similar to the 'llvm.memcpy'
// intrinsic but allows the two memory locations to overlap.
// Note that, unlike the standard libc function, the llvm.memmove.* intrinsics
// do not return a value, and takes an extra alignment argument.
pragma(intrinsic, "llvm.memmove.i#")
void llvm_memmove(T)(void* dst, void* src, T len, uint alignment);
deprecated {
alias llvm_memmove!(uint) llvm_memmove_i32;
alias llvm_memmove!(ulong) llvm_memmove_i64;
}
// The 'llvm.memset.*' intrinsics fill a block of memory with a particular byte
// value.
// Note that, unlike the standard libc function, the llvm.memset intrinsic does
// not return a value, and takes an extra alignment argument.
pragma(intrinsic, "llvm.memset.i#")
void llvm_memset(T)(void* dst, ubyte val, T len, uint alignment);
deprecated {
alias llvm_memset!(uint) llvm_memset_i32;
alias llvm_memset!(ulong) llvm_memset_i64;
}
// The 'llvm.sqrt' intrinsics return the sqrt of the specified operand,
// returning the same value as the libm 'sqrt' functions would. Unlike sqrt in
// libm, however, llvm.sqrt has undefined behavior for negative numbers other
// than -0.0 (which allows for better optimization, because there is no need to
// worry about errno being set). llvm.sqrt(-0.0) is defined to return -0.0 like
// IEEE sqrt.
pragma(intrinsic, "llvm.sqrt.f#")
T llvm_sqrt(T)(T val);
deprecated {
alias llvm_sqrt!(float) llvm_sqrt_f32;
alias llvm_sqrt!(double) llvm_sqrt_f64;
alias llvm_sqrt!(real) llvm_sqrt_f80; // may not actually be .f80
}
// The 'llvm.sin.*' intrinsics return the sine of the operand.
pragma(intrinsic, "llvm.sin.f#")
T llvm_sin(T)(T val);
deprecated {
alias llvm_sin!(float) llvm_sin_f32;
alias llvm_sin!(double) llvm_sin_f64;
alias llvm_sin!(real) llvm_sin_f80; // may not actually be .f80
}
// The 'llvm.cos.*' intrinsics return the cosine of the operand.
pragma(intrinsic, "llvm.cos.f#")
T llvm_cos(T)(T val);
deprecated {
alias llvm_cos!(float) llvm_cos_f32;
alias llvm_cos!(double) llvm_cos_f64;
alias llvm_cos!(real) llvm_cos_f80; // may not actually be .f80
}
// The 'llvm.powi.*' intrinsics return the first operand raised to the specified
// (positive or negative) power. The order of evaluation of multiplications is
// not defined. When a vector of floating point type is used, the second
// argument remains a scalar integer value.
pragma(intrinsic, "llvm.powi.f#")
T llvm_powi(T)(T val, int power);
deprecated {
alias llvm_powi!(float) llvm_powi_f32;
alias llvm_powi!(double) llvm_powi_f64;
alias llvm_powi!(real) llvm_powi_f80; // may not actually be .f80
}
// The 'llvm.pow.*' intrinsics return the first operand raised to the specified
// (positive or negative) power.
pragma(intrinsic, "llvm.pow.f#")
T llvm_pow(T)(T val, T power);
deprecated {
alias llvm_pow!(float) llvm_pow_f32;
alias llvm_pow!(double) llvm_pow_f64;
alias llvm_pow!(real) llvm_pow_f80; // may not actually be .f80
}
//
// BIT MANIPULATION INTRINSICS
//
// The 'llvm.bswap' family of intrinsics is used to byte swap integer values
// with an even number of bytes (positive multiple of 16 bits). These are
// useful for performing operations on data that is not in the target's native
// byte order.
pragma(intrinsic, "llvm.bswap.i#.i#")
T llvm_bswap(T)(T val);
deprecated {
alias llvm_bswap!(ushort) llvm_bswap_i16;
alias llvm_bswap!(uint) llvm_bswap_i32;
alias llvm_bswap!(ulong) llvm_bswap_i64;
}
// The 'llvm.ctpop' family of intrinsics counts the number of bits set in a
// value.
pragma(intrinsic, "llvm.ctpop.i#")
T llvm_ctpop(T)(T src);
deprecated {
alias llvm_ctpop!(ubyte) llvm_ctpop_i8;
alias llvm_ctpop!(ushort) llvm_ctpop_i16;
alias llvm_ctpop!(uint) llvm_ctpop_i32;
alias llvm_ctpop!(ulong) llvm_ctpop_i64;
}
// The 'llvm.ctlz' family of intrinsic functions counts the number of leading
// zeros in a variable.
pragma(intrinsic, "llvm.ctlz.i#")
T llvm_ctlz(T)(T src);
deprecated {
alias llvm_ctlz!(ubyte) llvm_ctlz_i8;
alias llvm_ctlz!(ushort) llvm_ctlz_i16;
alias llvm_ctlz!(uint) llvm_ctlz_i32;
alias llvm_ctlz!(ulong) llvm_ctlz_i64;
}
// The 'llvm.cttz' family of intrinsic functions counts the number of trailing
// zeros.
pragma(intrinsic, "llvm.cttz.i#")
T llvm_cttz(T)(T src);
deprecated {
alias llvm_cttz!(ubyte) llvm_cttz_i8;
alias llvm_cttz!(ushort) llvm_cttz_i16;
alias llvm_cttz!(uint) llvm_cttz_i32;
alias llvm_cttz!(ulong) llvm_cttz_i64;
}
// The 'llvm.part.select' family of intrinsic functions selects a range of bits
// from an integer value and returns them in the same bit width as the original
// value.
pragma(intrinsic, "llvm.part.select.i#")
T llvm_part_select(T)(T val, uint loBit, uint hiBit);
deprecated {
alias llvm_part_select!(ubyte) llvm_part_select_i;
alias llvm_part_select!(ushort) llvm_part_select_i;
alias llvm_part_select!(uint) llvm_part_select_i;
alias llvm_part_select!(ulong) llvm_part_select_i;
}
// The 'llvm.part.set' family of intrinsic functions replaces a range of bits
// in an integer value with another integer value. It returns the integer with
// the replaced bits.
// TODO
// declare i17 @llvm.part.set.i17.i9 (i17 %val, i9 %repl, i32 %lo, i32 %hi)
// declare i29 @llvm.part.set.i29.i9 (i29 %val, i9 %repl, i32 %lo, i32 %hi)
//
// ATOMIC OPERATIONS AND SYNCHRONIZATION INTRINSICS
//
// The llvm.memory.barrier intrinsic guarantees ordering between specific
// pairs of memory access types.
pragma(intrinsic, "llvm.memory.barrier")
void llvm_memory_barrier(bool ll, bool ls, bool sl, bool ss, bool device);
// This loads a value in memory and compares it to a given value. If they are
// equal, it stores a new value into the memory.
pragma(intrinsic, "llvm.atomic.cmp.swap.i#.p0i#")
T llvm_atomic_cmp_swap(T)(T* ptr, T cmp, T val);
// This intrinsic loads the value stored in memory at ptr and yields the value
// from memory. It then stores the value in val in the memory at ptr.
pragma(intrinsic, "llvm.atomic.swap.i#.p0i#")
T llvm_atomic_swap(T)(T* ptr, T val);
// This intrinsic adds delta to the value stored in memory at ptr. It yields
// the original value at ptr.
pragma(intrinsic, "llvm.atomic.load.add.i#.p0i#")
T llvm_atomic_load_add(T)(T* ptr, T val);
// This intrinsic subtracts delta to the value stored in memory at ptr. It
// yields the original value at ptr.
pragma(intrinsic, "llvm.atomic.load.sub.i#.p0i#")
T llvm_atomic_load_sub(T)(T* ptr, T val);
// These intrinsics bitwise the operation (and, nand, or, xor) delta to the
// value stored in memory at ptr. It yields the original value at ptr.
pragma(intrinsic, "llvm.atomic.load.and.i#.p0i#")
T llvm_atomic_load_and(T)(T* ptr, T val);
pragma(intrinsic, "llvm.atomic.load.nand.i#.p0i#")
T llvm_atomic_load_nand(T)(T* ptr, T val);
pragma(intrinsic, "llvm.atomic.load.or.i#.p0i#")
T llvm_atomic_load_or(T)(T* ptr, T val);
pragma(intrinsic, "llvm.atomic.load.xor.i#.p0i#")
T llvm_atomic_load_xor(T)(T* ptr, T val);
// These intrinsics takes the signed or unsigned minimum or maximum of delta
// and the value stored in memory at ptr. It yields the original value at ptr.
pragma(intrinsic, "llvm.atomic.load.max.i#.p0i#")
T llvm_atomic_load_max(T)(T* ptr, T val);
pragma(intrinsic, "llvm.atomic.load.min.i#.p0i#")
T llvm_atomic_load_min(T)(T* ptr, T val);
pragma(intrinsic, "llvm.atomic.load.umax.i#.p0i#")
T llvm_atomic_load_umax(T)(T* ptr, T val);
pragma(intrinsic, "llvm.atomic.load.umin.i#.p0i#")
T llvm_atomic_load_umin(T)(T* ptr, T val);
//
// ARITHMETIC-WITH-OVERFLOW INTRINSICS
//
struct OverflowRet(T) {
static assert(is(T : int), T.stringof ~ " is not an integer type!");
T result;
bool overflow;
}
// Signed and unsigned addition
pragma(intrinsic, "llvm.sadd.with.overflow.i#")
OverflowRet!(T) llvm_sadd_with_overflow(T)(T lhs, T rhs);
pragma(intrinsic, "llvm.uadd.with.overflow.i#")
OverflowRet!(T) llvm_uadd_with_overflow(T)(T lhs, T rhs);
// Signed and unsigned subtraction
pragma(intrinsic, "llvm.ssub.with.overflow.i#")
OverflowRet!(T) llvm_ssub_with_overflow(T)(T lhs, T rhs);
pragma(intrinsic, "llvm.usub.with.overflow.i#")
OverflowRet!(T) llvm_usub_with_overflow(T)(T lhs, T rhs);
// Signed and unsigned multiplication
pragma(intrinsic, "llvm.smul.with.overflow.i#")
OverflowRet!(T) llvm_smul_with_overflow(T)(T lhs, T rhs);
/* Note: LLVM documentations says:
* Warning: 'llvm.umul.with.overflow' is badly broken.
* It is actively being fixed, but it should not currently be used!
*
* See: http://llvm.org/docs/LangRef.html#int_umul_overflow
*/
//pragma(intrinsic, "llvm.umul.with.overflow.i#")
// OverflowRet!(T) llvm_umul_with_overflow(T)(T lhs, T rhs);
//
// GENERAL INTRINSICS
//
// This intrinsics is lowered to the target dependent trap instruction. If the
// target does not have a trap instruction, this intrinsic will be lowered to
// the call of the abort() function.
pragma(intrinsic, "llvm.trap")
void llvm_trap();
|