12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169 |
|
/*******************************************************************************
copyright: Copyright (c) 2008 Kris Bell. All rights reserved
license: BSD style: $(LICENSE)
version: Apr 2008: Initial release
authors: Kris
Since: 0.99.7
Based upon Doug Lea's Java collection package
*******************************************************************************/
module tango.util.container.LinkedList;
private import tango.util.container.Slink;
public import tango.util.container.Container;
private import tango.util.container.model.IContainer;
/*******************************************************************************
List of singly-linked values
---
Iterator iterator ()
int opApply (int delegate(ref V value) dg)
V head ()
V tail ()
V head (V value)
V tail (V value)
V removeHead ()
V removeTail ()
bool contains (V value)
size_t first (V value, size_t startingIndex = 0)
size_t last (V value, size_t startingIndex = 0)
LinkedList add (V value)
LinkedList prepend (V value)
size_t prepend (IContainer!(V) e)
LinkedList append (V value)
size_t append (IContainer!(V) e)
LinkedList addAt (size_t index, V value)
size_t addAt (size_t index, IContainer!(V) e)
V get (size_t index)
bool take (ref V v)
size_t remove (V value, bool all)
bool removeAt (size_t index)
size_t removeRange (size_t fromIndex, size_t toIndex)
size_t replace (V oldElement, V newElement, bool all)
bool replaceAt (size_t index, V value)
LinkedList clear ()
LinkedList reset ()
LinkedList subset (size_t from, size_t length = size_t.max)
LinkedList dup ()
size_t size ()
bool isEmpty ()
V[] toArray (V[] dst)
LinkedList sort (Compare!(V) cmp)
LinkedList check ()
---
*******************************************************************************/
class LinkedList (V, alias Reap = Container.reap,
alias Heap = Container.DefaultCollect)
: IContainer!(V)
{
// use this type for Allocator configuration
private alias Slink!(V) Type;
private alias Type* Ref;
private alias V* VRef;
private alias Heap!(Type) Alloc;
// number of elements contained
private size_t count;
// configured heap manager
private Alloc heap;
// mutation tag updates on each change
private size_t mutation;
// head of the list. Null if empty
private Ref list;
/***********************************************************************
Create a new empty list
***********************************************************************/
this ()
{
this (null, 0);
}
/***********************************************************************
Special version of constructor needed by dup
***********************************************************************/
protected this (Ref l, size_t c)
{
list = l;
count = c;
}
/***********************************************************************
Clean up when deleted
***********************************************************************/
~this ()
{
reset;
}
/***********************************************************************
Return the configured allocator
***********************************************************************/
final Alloc allocator ()
{
return heap;
}
/***********************************************************************
Return a generic iterator for contained elements
***********************************************************************/
final Iterator iterator ()
{
Iterator i = void;
i.mutation = mutation;
i.node = list ? *(i.hook = &list) : null;
i.prior = null;
i.owner = this;
return i;
}
/***********************************************************************
***********************************************************************/
final int opApply (int delegate(ref V value) dg)
{
return iterator.opApply (dg);
}
/***********************************************************************
Return the number of elements contained
***********************************************************************/
final size_t size ()
{
return count;
}
/***********************************************************************
Build an independent copy of the list.
The elements themselves are not cloned
***********************************************************************/
final LinkedList dup ()
{
return new LinkedList!(V, Reap, Heap) (list ? list.copy(&heap.allocate) : null, count);
}
/***********************************************************************
Time complexity: O(n)
***********************************************************************/
final bool contains (V value)
{
if (count is 0)
return false;
return list.find(value) !is null;
}
/***********************************************************************
Time complexity: O(1)
***********************************************************************/
final V head ()
{
return firstCell.value;
}
/***********************************************************************
Time complexity: O(n)
***********************************************************************/
final V tail ()
{
return lastCell.value;
}
/***********************************************************************
Time complexity: O(n)
***********************************************************************/
final V get (size_t index)
{
return cellAt(index).value;
}
/***********************************************************************
Time complexity: O(n)
Returns size_t.max if no element found.
***********************************************************************/
final size_t first (V value, size_t startingIndex = 0)
{
if (list is null || startingIndex >= count)
return size_t.max;
if (startingIndex < 0)
startingIndex = 0;
auto p = list.nth (startingIndex);
if (p)
{
auto i = p.index (value);
if (i >= 0)
return i + startingIndex;
}
return size_t.max;
}
/***********************************************************************
Time complexity: O(n)
Returns size_t.max if no element found.
***********************************************************************/
final size_t last (V value, size_t startingIndex = 0)
{
if (list is null)
return size_t.max;
auto i = 0;
if (startingIndex >= count)
startingIndex = count - 1;
auto index = size_t.max;
auto p = list;
while (i <= startingIndex && p)
{
if (p.value == value)
index = i;
++i;
p = p.next;
}
return index;
}
/***********************************************************************
Time complexity: O(length)
***********************************************************************/
final LinkedList subset (size_t from, size_t length = size_t.max)
{
Ref newlist = null;
if (length > 0)
{
auto p = cellAt (from);
auto current = newlist = heap.allocate.set (p.value, null);
for (auto i = 1; i < length; ++i)
if ((p = p.next) is null)
length = i;
else
{
current.attach (heap.allocate.set (p.value, null));
current = current.next;
}
}
return new LinkedList (newlist, length);
}
/***********************************************************************
Time complexity: O(n)
***********************************************************************/
final LinkedList clear ()
{
return clear (false);
}
/***********************************************************************
Reset the HashMap contents and optionally configure a new
heap manager. We cannot guarantee to clean up reconfigured
allocators, so be sure to invoke reset() before discarding
this class
Time complexity: O(n)
***********************************************************************/
final LinkedList reset ()
{
return clear (true);
}
/***********************************************************************
Takes the first value on the list
Time complexity: O(1)
***********************************************************************/
final bool take (ref V v)
{
if (count)
{
v = head;
removeHead;
return true;
}
return false;
}
/***********************************************************************
Uses a merge-sort-based algorithm.
Time complexity: O(n log n)
***********************************************************************/
final LinkedList sort (Compare!(V) cmp)
{
if (list)
{
list = Ref.sort (list, cmp);
mutate;
}
return this;
}
/***********************************************************************
Time complexity: O(1)
***********************************************************************/
final LinkedList add (V value)
{
return prepend (value);
}
/***********************************************************************
Time complexity: O(1)
***********************************************************************/
final LinkedList prepend (V value)
{
list = heap.allocate.set (value, list);
increment;
return this;
}
/***********************************************************************
Time complexity: O(n)
***********************************************************************/
final size_t remove (V value, bool all = false)
{
auto c = count;
if (c)
{
auto p = list;
auto trail = p;
while (p)
{
auto n = p.next;
if (p.value == value)
{
decrement (p);
if (p is list)
{
list = n;
trail = n;
}
else
trail.next = n;
if (!all || count is 0)
break;
else
p = n;
}
else
{
trail = p;
p = n;
}
}
}
return c - count;
}
/***********************************************************************
Time complexity: O(n)
***********************************************************************/
final size_t replace (V oldElement, V newElement, bool all = false)
{
size_t c;
if (count && oldElement != newElement)
{
auto p = list.find (oldElement);
while (p)
{
++c;
mutate;
p.value = newElement;
if (!all)
break;
p = p.find (oldElement);
}
}
return c;
}
/***********************************************************************
Time complexity: O(1)
***********************************************************************/
final V head (V value)
{
auto cell = firstCell;
auto v = cell.value;
cell.value = value;
mutate;
return v;
}
/***********************************************************************
Time complexity: O(1)
***********************************************************************/
final V removeHead ()
{
auto p = firstCell;
auto v = p.value;
list = p.next;
decrement (p);
return v;
}
/***********************************************************************
Time complexity: O(n)
***********************************************************************/
final LinkedList append (V value)
{
if (list is null)
prepend (value);
else
{
list.tail.next = heap.allocate.set (value, null);
increment;
}
return this;
}
/***********************************************************************
Time complexity: O(n)
***********************************************************************/
final V tail (V value)
{
auto p = lastCell;
auto v = p.value;
p.value = value;
mutate;
return v;
}
/***********************************************************************
Time complexity: O(n)
***********************************************************************/
final V removeTail ()
{
if (firstCell.next is null)
return removeHead;
auto trail = list;
auto p = trail.next;
while (p.next)
{
trail = p;
p = p.next;
}
trail.next = null;
auto v = p.value;
decrement (p);
return v;
}
/***********************************************************************
Time complexity: O(n)
***********************************************************************/
final LinkedList addAt (size_t index, V value)
{
if (index is 0)
prepend (value);
else
{
cellAt(index - 1).attach (heap.allocate.set(value, null));
increment;
}
return this;
}
/***********************************************************************
Time complexity: O(n)
***********************************************************************/
final LinkedList removeAt (size_t index)
{
if (index is 0)
removeHead;
else
{
auto p = cellAt (index - 1);
auto t = p.next;
p.detachNext;
decrement (t);
}
return this;
}
/***********************************************************************
Time complexity: O(n)
***********************************************************************/
final LinkedList replaceAt (size_t index, V value)
{
cellAt(index).value = value;
mutate;
return this;
}
/***********************************************************************
Time complexity: O(number of elements in e)
***********************************************************************/
final size_t prepend (IContainer!(V) e)
{
auto c = count;
splice_ (e, null, list);
return count - c;
}
/***********************************************************************
Time complexity: O(n + number of elements in e)
***********************************************************************/
final size_t append (IContainer!(V) e)
{
auto c = count;
if (list is null)
splice_ (e, null, null);
else
splice_ (e, list.tail, null);
return count - c;
}
/***********************************************************************
Time complexity: O(n + number of elements in e)
***********************************************************************/
final size_t addAt (size_t index, IContainer!(V) e)
{
auto c = count;
if (index is 0)
splice_ (e, null, list);
else
{
auto p = cellAt (index - 1);
splice_ (e, p, p.next);
}
return count - c;
}
/***********************************************************************
Time complexity: O(n)
***********************************************************************/
final size_t removeRange (size_t fromIndex, size_t toIndex)
{
auto c = count;
if (fromIndex <= toIndex)
{
if (fromIndex is 0)
{
auto p = firstCell;
for (size_t i = fromIndex; i <= toIndex; ++i)
p = p.next;
list = p;
}
else
{
auto f = cellAt (fromIndex - 1);
auto p = f;
for (size_t i = fromIndex; i <= toIndex; ++i)
p = p.next;
f.next = p.next;
}
count -= (toIndex - fromIndex + 1);
mutate;
}
return c - count;
}
/***********************************************************************
Copy and return the contained set of values in an array,
using the optional dst as a recipient (which is resized
as necessary).
Returns a slice of dst representing the container values.
Time complexity: O(n)
***********************************************************************/
final V[] toArray (V[] dst = null)
{
if (dst.length < count)
dst.length = count;
size_t i = 0;
foreach (v; this)
dst[i++] = v;
return dst [0 .. count];
}
/***********************************************************************
Is this container empty?
Time complexity: O(1)
***********************************************************************/
final bool isEmpty ()
{
return count is 0;
}
/***********************************************************************
***********************************************************************/
final LinkedList check ()
{
assert(((count is 0) is (list is null)));
assert((list is null || list.count is size));
size_t c = 0;
for (Ref p = list; p; p = p.next)
{
assert(instances(p.value) > 0);
assert(contains(p.value));
++c;
}
assert(c is count);
return this;
}
/***********************************************************************
Time complexity: O(n)
***********************************************************************/
private size_t instances (V value)
{
if (count is 0)
return 0;
return list.count (value);
}
/***********************************************************************
***********************************************************************/
private Ref firstCell ()
{
checkIndex (0);
return list;
}
/***********************************************************************
***********************************************************************/
private Ref lastCell ()
{
checkIndex (0);
return list.tail;
}
/***********************************************************************
***********************************************************************/
private Ref cellAt (size_t index)
{
checkIndex (index);
return list.nth (index);
}
/***********************************************************************
***********************************************************************/
private void checkIndex (size_t index)
{
if (index >= count)
throw new Exception ("out of range");
}
/***********************************************************************
Splice elements of e between hd and tl. If hd
is null return new hd
Returns the count of new elements added
***********************************************************************/
private void splice_ (IContainer!(V) e, Ref hd, Ref tl)
{
Ref newlist = null;
Ref current = null;
foreach (v; e)
{
increment;
auto p = heap.allocate.set (v, null);
if (newlist is null)
newlist = p;
else
current.next = p;
current = p;
}
if (current)
{
current.next = tl;
if (hd is null)
list = newlist;
else
hd.next = newlist;
}
}
/***********************************************************************
Time complexity: O(n)
***********************************************************************/
private LinkedList clear (bool all)
{
mutate;
// collect each node if we can't collect all at once
if (heap.collect(all) is false && count)
{
auto p = list;
while (p)
{
auto n = p.next;
decrement (p);
p = n;
}
}
list = null;
count = 0;
return this;
}
/***********************************************************************
new element was added
***********************************************************************/
private void increment ()
{
++mutation;
++count;
}
/***********************************************************************
element was removed
***********************************************************************/
private void decrement (Ref p)
{
Reap (p.value);
heap.collect (p);
++mutation;
--count;
}
/***********************************************************************
set was changed
***********************************************************************/
private void mutate ()
{
++mutation;
}
/***********************************************************************
List iterator
***********************************************************************/
private struct Iterator
{
Ref node;
Ref* hook,
prior;
LinkedList owner;
size_t mutation;
/***************************************************************
Did the container change underneath us?
***************************************************************/
bool valid ()
{
return owner.mutation is mutation;
}
/***************************************************************
Accesses the next value, and returns false when
there are no further values to traverse
***************************************************************/
bool next (ref V v)
{
auto n = next;
return (n) ? v = *n, true : false;
}
/***************************************************************
Return a pointer to the next value, or null when
there are no further values to traverse
***************************************************************/
V* next ()
{
V* r;
if (node)
{
prior = hook;
r = &node.value;
node = *(hook = &node.next);
}
return r;
}
/***************************************************************
Insert a new value before the node about to be
iterated (or after the node that was just iterated).
***************************************************************/
void insert(V value)
{
// insert a node previous to the node that we are
// about to iterate.
*hook = owner.heap.allocate.set(value, *hook);
node = *hook;
next();
// update the count of the owner, and ignore this
// change in the mutation.
owner.increment;
mutation++;
}
/***************************************************************
Insert a new value before the value that was just
iterated.
Returns true if the prior node existed and the
insertion worked. False otherwise.
***************************************************************/
bool insertPrior(V value)
{
if(prior)
{
// insert a node previous to the node that we just
// iterated.
*prior = owner.heap.allocate.set(value, *prior);
prior = &(*prior).next;
// update the count of the owner, and ignore this
// change in the mutation.
owner.increment;
mutation++;
return true;
}
return false;
}
/***************************************************************
Foreach support
***************************************************************/
int opApply (int delegate(ref V value) dg)
{
int result;
auto n = node;
while (n)
{
prior = hook;
hook = &n.next;
if ((result = dg(n.value)) != 0)
break;
n = *hook;
}
node = n;
return result;
}
/***************************************************************
Remove value at the current iterator location
***************************************************************/
bool remove ()
{
if (prior)
{
auto p = *prior;
*prior = p.next;
owner.decrement (p);
hook = prior;
prior = null;
// ignore this change
++mutation;
return true;
}
return false;
}
}
}
/*******************************************************************************
*******************************************************************************/
debug (LinkedList)
{
import tango.io.Stdout;
import tango.core.Thread;
import tango.time.StopWatch;
void main()
{
// usage examples ...
auto set = new LinkedList!(char[]);
set.add ("foo");
set.add ("bar");
set.add ("wumpus");
// implicit generic iteration
foreach (value; set)
Stdout (value).newline;
// explicit generic iteration
foreach (value; set.iterator)
Stdout.formatln ("{}", value);
// generic iteration with optional remove and insert
auto s = set.iterator;
foreach (value; s)
{
if (value == "foo")
s.remove;
if (value == "bar")
s.insertPrior("bloomper");
if (value == "wumpus")
s.insert("rumple");
}
set.check();
// incremental iteration, with optional remove
char[] v;
auto iterator = set.iterator;
while (iterator.next(v))
{} //iterator.remove;
// incremental iteration, with optional failfast
auto it = set.iterator;
while (it.valid && it.next(v))
{}
// remove specific element
set.remove ("wumpus");
// remove first element ...
while (set.take(v))
Stdout.formatln ("taking {}, {} left", v, set.size);
// setup for benchmark, with a set of integers. We
// use a chunk allocator, and presize the bucket[]
auto test = new LinkedList!(int, Container.reap, Container.Chunk);
test.allocator.config (2000, 500);
const count = 1_000_000;
StopWatch w;
// benchmark adding
w.start;
for (int i=count; i--;)
test.prepend(i);
Stdout.formatln ("{} adds: {}/s", test.size, test.size/w.stop);
// benchmark adding without allocation overhead
test.clear;
w.start;
for (int i=count; i--;)
test.prepend(i);
Stdout.formatln ("{} adds (after clear): {}/s", test.size, test.size/w.stop);
// benchmark duplication
w.start;
auto dup = test.dup;
Stdout.formatln ("{} element dup: {}/s", dup.size, dup.size/w.stop);
// benchmark iteration
w.start;
auto xx = test.iterator;
int ii;
while (xx.next()) {}
Stdout.formatln ("{} element iteration: {}/s", test.size, test.size/w.stop);
// benchmark iteration
w.start;
foreach (v; test) {}
Stdout.formatln ("{} foreach iteration: {}/s", test.size, test.size/w.stop);
// benchmark iteration
w.start;
foreach (ref iii; test) {}
Stdout.formatln ("{} pointer iteration: {}/s", test.size, test.size/w.stop);
test.check;
}
}
|